
Automating Security Defenses
The Application Strikes Back



whoami

• Nathaniel (Nat) Shere
• Cybersecurity Consultant
• Penetration testing (“ethical hacking”)
• Secure Web Development

• Security Engineer
• Hobbies: security, programming, board games

Nebraska.Code() – Automating Security Defenses



What I Will Cover

• Importance of proactive security
• Current strategies – Reactive vs. Proactive
• The Application Strikes Back

Nebraska.Code() – Automating Security Defenses



A Word of Caution

• Don’t hack back!

Nebraska.Code() – Automating Security Defenses



Importance of Proactive Security

Nebraska.Code() – Automating Security Defenses



287
The average number of days to identify a data breach in 2020

Source: https://www.ibm.com/security/digital-assets/cost-data-breach-report/#/pdf

Nebraska.Code() – Automating Security Defenses

https://www.ibm.com/security/digital-assets/cost-data-breach-report/


80
The average time (days) to contain a breach in 2020

Source: https://www.ibm.com/security/digital-assets/cost-data-breach-report/#/pdf

Nebraska.Code() – Automating Security Defenses

https://www.ibm.com/security/digital-assets/cost-data-breach-report/


367
The average length (days) of a breach in 2020

Source: https://www.ibm.com/security/digital-assets/cost-data-breach-report/#/pdf

Nebraska.Code() – Automating Security Defenses

https://www.ibm.com/security/digital-assets/cost-data-breach-report/


Source: https://www.varonis.com/blog/data-breach-response-times

Nebraska.Code() – Automating Security Defenses

https://www.varonis.com/blog/data-breach-response-times


Security Strategies

• Reactive
• Proactive

Nebraska.Code() – Automating Security Defenses



Security Strategy Goals

• Reduce time for security to detect attacker
• Increase time for attacker to find and exploit vulnerability

Nebraska.Code() – Automating Security Defenses



Reactive Strategies: No News is Good News

1. Set up a website
2. Pray you don’t see your company name in the security news

Nebraska.Code() – Automating Security Defenses



Reactive Strategies: Checkbox Security

Nebraska.Code() – Automating Security Defenses



Reactive Strategies: Security Operations Center 
(SOC)
1. Implement logging
2. Collect logs in centralized place
3. Add rules and correlation logic to logs
4. Implement alerting based on triggers and thresholds
5. Identify stakeholders and asset owners

6. Create triage steps and playbooks for each alert

7. Add rules and correlation logic to alerts

8. Implement new tools and software
9. Configure the tools

10. Test the tools in your environment
11. Realize something isn’t logging correctly

12. Realize stakeholders changed

13. Etc. etc. etc.

Nebraska.Code() – Automating Security Defenses



The Application Strikes Back

Nebraska.Code() – Automating Security Defenses



Hybrid Strategy: Alert from the Application

1. Identify a security risk in your application
2. Send an alert from the application if the risk is triggered
3. Block the offending user/source IP
• Table of blocked sources
• Automated request to WAF

Nebraska.Code() – Automating Security Defenses



Identify Security Risk: Data Enumeration

GET /users/4/profile

Nebraska.Code() – Automating Security Defenses



Identify Security Risk: Data Enumeration

GET /users/4/profile

Nebraska.Code() – Automating Security Defenses

GET /client/75/edit

GET /invoice/1d68ea56-e458-4f0d-bf26-9fcc5dd31e6a



Identify Security Risk: Login Portals

• /login
• /wp-login
• /admin
• /portal

Nebraska.Code() – Automating Security Defenses



Identify Security Risk: Brute Force Logins

• admin:password
• admin:password1
• admin:letmein
• admin:secret
• admin:12345678
• admin:rocky
• admin:password!

Nebraska.Code() – Automating Security Defenses



Proactive Strategy: Bloody Trapland

1. Insert honeypot areas/code
2. Send an alert from the application if the honeypot is triggered
3. Block the offending user/source IP

Nebraska.Code() – Automating Security Defenses



Robots.txt

Nebraska.Code() – Automating Security Defenses

• Add a fake entry to 
robots.txt that blocks 
any user that visits it



Fake Cookies

Cookie: isAdmin=False

Nebraska.Code() – Automating Security Defenses



Fake JavaScript Comments

Nebraska.Code() – Automating Security Defenses

Inserted comment: “previous login portal at /account/login/old needs to be removed as it doesn’t 
have brute force protection”



Fake URL Parameters

Nebraska.Code() – Automating Security Defenses



Developer Tools

Nebraska.Code() – Automating Security Defenses

Only two types of users utilize developer tools: developers and hackers



Threat Modeling

Nebraska.Code() – Automating Security Defenses

Script 
Kiddie

Opportunistic 
Attacker

Targeted 
Attacker

Nation 
State 
Threat



Threat Modeling

Nebraska.Code() – Automating Security Defenses

• Eliminate threats of low-level attackers
• Give security more time to focus on advanced attackers



Questions?
nathaniel.shere@craftcompliance.com

https://www.linkedin.com/in/nathaniel-shere/

Nebraska.Code() – Automating Security Defenses


